How to probe electroweak physics and beyond with τ leptons at hadron colliders?

Romain Madar

Physikalisches Institut Albert-Ludwigs-Un<mark>iversität, Freib</mark>urg – Germany

Laboratoire de Physique Corpusculaire The 24th of January 2014 – Clermont-Ferrand, France

Romain Madar (Freiburg Universität)

FREIBURG

Unified theory of interactions $SU(2)_L \times U(1)_Y \times SU(3)_c$ + Higgs mechanism

Is the Higgs mechanism realized in Nature?

Unified theory of interactions $SU(2)_L \times U(1)_Y \times SU(3)_c$ + Higgs mechanism

Is the Higgs mechanism realized in Nature?

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

The Nobel Prize in Physics 2013

Photo: Pnicolet via Wikimedia Commons François Englert

Photo: G-M Grevel via

Photo: G-M Greuel via Wikimedia Commons Peter W. Higgs

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

The Tevatron and DØ:

The LHC and ATLAS :

1. Standard Model Physics :

Keep testing SM at the TeV scale (V - A vertex, lepton universality, ...).

1. Standard Model Physics :

Keep testing SM at the TeV scale (V - A vertex, lepton universality, ...).

2. Understand EWSB with τ :

- Observation of $H \rightarrow \tau \tau$ process?
- Unique test of g_{Hff} ∝ m_f in the fermionic sector (together with H → bb measurement)
- particularly sensitive to VBF

• Polarization studies : access to \mathcal{J}^{CP}

1. Standard Model Physics :

Keep testing SM at the TeV scale (V - A vertex, lepton universality, ...).

2. Understand EWSB with τ :

- Observation of $H \rightarrow \tau \tau$ process?
- Unique test of g_{Hff} ∝ m_f in the fermionic sector (together with H → bb̄ measurement)
- particularly sensitive to VBF
- Polarization studies : access to \mathcal{J}^{CP}

- 3. New physics with τ : in parallel of the new resonance identification
 - SUSY, Larger gauge group (doubly charged Higgs),
 - new interaction (Z' search), lepton flavor violation in Z (H?) decay, ...

1. Standard Model Physics :

Keep testing SM at the TeV scale (V - A vertex, lepton universality, ...).

2. Understand EWSB with τ :

- Observation of $H \rightarrow \tau \tau$ process?
- Unique test of g_{Hff} ∝ m_f in the fermionic sector (together with H → bb̄ measurement)
- particularly sensitive to VBF

• Polarization studies : access to \mathcal{J}^{CP}

- **3. New physics with** τ **:** in parallel of the new resonance identification
 - SUSY, Larger gauge group (doubly charged Higgs),
 - new interaction (Z' search), lepton flavor violation in Z (H?) decay, ...

 τ lepton final states have a key role in undersdanding the SM and beyond !

But experimentally challenging ! Jets contamination very frequent in hadrons collider !

 $\tau_{\rm had} \approx {\rm narrower \ jet \ with \ lower} \\ {\rm track \ multiplicities}$

But experimentally challenging ! Jets contamination very frequent in hadrons collider !

 $\tau_{\rm had} \approx {\rm narrower \ jet \ with \ lower} \\ {\rm track \ multiplicities}$

Typical signature of hadronic τ decay :

- 1 or 3 isolated tracks, with possible secondary vertex reconstruction.
- Collimated calorimeter energy deposit.
- Large leading track fraction momentum.

0.5

15

20

30 35 40 45 50 55 $p_{\tau}(\tau_{had-vis})$ [GeV]

Romain Madar (Freiburg Universität)

"Tag"

τ → μνν

Ζ→ττ

Energy calibration of au lepton

Why and how?

- $m_{\tau\tau} \propto E_{\tau}$: a wrong scale will lead to shifted mass peak.
- Use the simulation to measure the energy response
- Use data (and MC) to estimate the uncertainty and a potential bias

Energy calibration of au lepton

Why and how?

- $m_{\tau\tau} \propto E_{\tau}$: a wrong scale will lead to shifted mass peak.
- Use the simulation to measure the energy response
- Use data (and MC) to estimate the uncertainty and a potential bias

Neutrinos momentum : Er reconstruction

Neutrinos don't interact with the detector : they are measured using the unbalance of the total transverse momentum.

Neutrinos momentum : Er reconstruction

Neutrinos don't interact with the detector : they are measured using the unbalance of the total transverse momentum.

Calorimeter based :

- Raw : $\vec{\mathbf{E}}_{\mathrm{T}} \equiv -\sum_{\mathrm{cell} i} \vec{E}_{\mathrm{T}}^{i}$,
- Corrected for muons (only MIP),
- Corrected for energy scale of each type of object

Keep in mind : $\vec{\mathbb{E}}_{\mathrm{T}} \stackrel{\mathrm{reco}}{=} \left(\sum_{i} \vec{p}_{\nu_{i}} \right)_{\mathrm{T}}$

Neutrinos momentum : Er reconstruction

Neutrinos don't interact with the detector : they are measured using the unbalance of the total transverse momentum.

Calorimeter based :

- Raw : $\vec{\mathbf{E}}_{\mathrm{T}} \equiv -\sum_{\mathrm{cell}} i \vec{E}_{\mathrm{T}}^{i}$,
- Corrected for muons (only MIP),
- Corrected for energy scale of each type of object Keep in mind : $\vec{\mathbf{E}}_{T} \stackrel{\text{reco}}{=} (\sum_{i} \vec{p}_{\nu_{i}})_{T}$

Comments : sensitive to all the activity in the event (pile up, detector noise, soft radiations, ...).

Some technics are elaborated to reduce pile-up effect on the $\not\!\!\!E_T$ resolution.

- 2 Electroweak symmetry breaking mechanism
- **3** Beyond the Standard Model
- Summary and outlooks

Standard Model physics (1/2)

Main SM properties accessible through τ :

• $\sigma_{Z,W}$ measurement for 2 initial states / center-of-mass energy,

2 V - A structure of weak current at $Q^2 \sim M_W^2$: $\mathcal{L} \sim W_\mu \, \bar{\nu} \, \gamma^\mu \frac{(1-\gamma^5)}{2} \, \ell$.

Standard Model physics (1/2)

Main SM properties accessible through τ :

- **1** $\sigma_{Z,W}$ measurement for 2 initial states / center-of-mass energy,
- 2 V A structure of weak current at $Q^2 \sim M_W^2$: $\mathcal{L} \sim W_\mu \bar{\nu} \gamma^\mu \frac{(1-\gamma^5)}{2} \ell$.

 τ - ProductionW' \rightarrow (τ)
Left ($\bar{\nu}_{\tau}$)
Right $P_{\tau^-} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \stackrel{\text{SM}}{\equiv} -1$

 $\label{eq:relation} \begin{array}{c} \overline{\mathbf{\tau} \cdot \mathbf{Production}} & \mathbf{W} \cdot \mathbf{\neg} (\overline{\mathbf{\tau}})_{\text{Left}} \left(\overline{\mathbf{v}}_{\mathbf{\tau}} \right)_{\text{Right}} \\ P_{\tau^{-}} &= \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} \stackrel{\text{SM}}{\equiv} -1 \\ \hline \hline \mathbf{\tau} \cdot \mathbf{Decay} & \mathbf{\tau}_{L} \\ \hline \mathbf{\tau} \cdot \mathbf{Decay} & \mathbf{\tau}_{L} \\ \mathbf{\tau}_{L} &: \langle p_{\pi}^{\text{lab}} \rangle < \langle p_{\nu}^{\text{lab}} \rangle \end{array}$

Higgs boson search in au final states

- Overview of one Tevatron analysis
- **2** $H \rightarrow \tau \tau$ search in ATLAS
- Prospect for properties measurement

Analysis overview

Motivations (out-of-date) and strategy :

- $H \rightarrow WW \rightarrow \tau \mu$ process allow to complete other $H \rightarrow WW$ channels
- Select events with one τ and one isolated μ (based on trigger mixture),
- Look for an excess of events at high $M(\mu, \tau_{had}, \mathbf{E}_T)$,
- Other variables are combined in a NN to exploit the full kinematic,
- Main background is due to fake $\tau : W(\rightarrow \mu\nu)$ +jets.

Analysis overview

Motivations (out-of-date) and strategy :

- $H \rightarrow WW \rightarrow \tau \mu$ process allow to complete other $H \rightarrow WW$ channels
- Select events with one τ and one isolated μ (based on trigger mixture),
- Look for an excess of events at high $M(\mu, \tau_{had}, \mathbb{E}_T)$,
- Other variables are combined in a NN to exploit the full kinematic,
- Main background is due to fake $\tau : W(\rightarrow \mu\nu) + jets$.

Higgs boson search in au final states

- Overview of one Tevatron analysis
- **2** $H \rightarrow \tau \tau$ search in ATLAS
- 6 Prospect for properties measurement

General strategy of $H \rightarrow \tau \tau$ search :

General strategy of $H \rightarrow \tau \tau$ search :

EW physics and beyond with τ leptons

Electroweak symmetry breaking mechanism

$au_\ell au_{had}$ final state : signal and background

EW physics and beyond with τ leptons

Electroweak symmetry breaking mechanism

$\tau_{\ell} \tau_{had}$ final state : signal and background

Other processes with this signature : background

 τ_{had}

Multi Variate Analysis (MVA)

- 7-9 variables
- Boosted Decision Tree (BDT)

Input variables based on

- ττ resonance (mass, angle, ...)
- mET (neutrino direction)
- VBF topology (forward jets)

Multi Variate Analysis (MVA)

- 7-9 variables
- Boosted Decision Tree (BDT)

Input variables based on

- ττ resonance (mass, angle, ...)
- mET (neutrino direction)
- VBF topology (forward jets)

Validation of $Z \rightarrow \tau \tau$ modeling in **control regions**

Higgs boson search in au final states

- Overview of one Tevatron analysis
- 2 $H \rightarrow \tau \tau$ search in ATLAS
- O Prospect for properties measurement

3 types of property

- other SM particles couplings constant : observed event rate
- **2** spin : polarization, angular distributions
- **③** CP : angular correlation/distributions

3 types of property

- other SM particles couplings constant : observed event rate
- **2** spin : polarization, angular distributions
- **③** CP : angular correlation/distributions

arXiv :1209.0040, ATLAS-CONF-2012-127

3 types of property

- other SM particles couplings constant : observed event rate
- **2** spin : polarization, angular distributions
- **③** CP : angular correlation/distributions

EW physics and beyond with τ leptons

Electroweak symmetry breaking mechanism

EW physics and beyond with τ leptons

Electroweak symmetry breaking mechanism

How to go beyond the Standard Model?

- Higgs sector of supersymmetry (MSSM)
- New group of gauge symmetry? (heavy resonnance)

MSSM Higgs sector : overview

MSSM Higgs sector : 2 doublets \hat{H}_u , \hat{H}_d coupling to *up* and *down* quarks

- After EWSB, 5 Higgs bosons :
 φ = (h⁰, H⁰, A⁰) and H[±]
- Tree level predictions depend on $(m_A, \tan\beta)$ $\tan\beta \equiv \langle H_d \rangle / \langle H_u \rangle$
- Decay :
 - $\phi \rightarrow b\bar{b} \sim 90\%$
 - $\phi
 ightarrow au au \sim 10\%$ cleaner

MSSM Higgs sector : overview

MSSM Higgs sector : 2 doublets \hat{H}_u , \hat{H}_d coupling to *up* and *down* quarks

- After EWSB, 5 Higgs bosons :
 φ = (h⁰, H⁰, A⁰) and H[±]
- Tree level predictions depend on $(m_A, \tan \beta) \tan \beta \equiv \langle H_d \rangle / \langle H_u \rangle$
- Decay :

•
$$\phi \rightarrow b\bar{b} \sim 90\%$$

• $\phi
ightarrow au au \sim 10\%$ cleaner

MSSM Higgs sector : overview

MSSM Higgs sector : 2 doublets \hat{H}_u , \hat{H}_d coupling to *up* and *down* quarks

- After EWSB, 5 Higgs bosons :
 φ = (h⁰, H⁰, A⁰) and H[±]
- Tree level predictions depend on $(m_A, \tan \beta) \tan \beta \equiv \langle H_d \rangle / \langle H_u \rangle$
- Decay :

•
$$\phi \rightarrow b\bar{b} \sim 90\%$$

• $\phi \rightarrow \tau\tau \sim 10\%$ cleaner

I will focus on **neutral Higgs boson(s)** searches in τ (and *b*) final states.

For a wide review of BSM Higgs searches on Tevatron, see the 3rd Higgs Hunting presentation

Neutral MSSM Higgs search at LHC

Same strategy for ATLAS :

- exploit 2 production modes (with and without *b*-jet),
- use larger \sqrt{s} : reach higher masses,
- $(\sigma_H/\sigma_Z)_{LHC} > (\sigma_H/\sigma_Z)_{TeV}$, due to the specific initial state.

Still a lot of open questions, from theoretical level to clear observations ...

How to go beyond the Standard Model?

- Higgs sector of supersymmetry (MSSM)
- New group of gauge symmetry? (heavy resonance)

Z' searches in ATLAS

Motivations :

- New gauge symmetry,
- Kaluza-Klein excitation,
- Relatively generic search.

Challenges :

- τ_{had} τ_{had} most sensitive (higher *BR*), challenging trigger!
- τ_{had} of very high p_T : control of ϵ_{ID} and energy scale.

Z' searches in ATLAS

Motivations :

- New gauge symmetry,
- Kaluza-Klein excitation,
- Relatively generic search.

Challenges:

- $\tau_{had} \tau_{had}$ most sensitive (higher \mathcal{BR}), challenging trigger!
- τ_{had} of very high p_T : control of ϵ_{ID} and energy scale.

 $SSM \equiv$ Sequential Standard Model (same coupling to fermions as Z^0)

- 2 Electroweak symmetry breaking mechanism
- Beyond the Standard Model
- Summary and outlooks

The τ lepton final states provide key informations to understand the Standard Model and beyond at hadrons colliders.

Need sophisticated algorithms and a deep understanding of the experiment!

The τ lepton final states provide key informations to understand the Standard Model and beyond at hadrons colliders.

Need sophisticated algorithms and a deep understanding of the experiment!

Standard Model :

- Cross section measurement for 2 different initial state and \sqrt{s} .
- Test of the V A vertex at $Q \sim m_W$ first time at hadron colliders.

The τ lepton final states provide key informations to understand the Standard Model and beyond at hadrons colliders.

Need sophisticated algorithms and a deep understanding of the experiment!

Standard Model :

- Cross section measurement for 2 different initial state and \sqrt{s} .
- Test of the V A vertex at $Q \sim m_W$ first time at hadron colliders.

Higgs boson searches :

- Essential to test $g_{Hff} \propto m_f$, unique probe of Higgs-lepton couplings,
- Sensible to VBF, test consistency of the Higgs sector structure,
- **Evidence** at 4.1σ ! Possible perspectives for spin/CP.

The τ lepton final states provide key informations to understand the Standard Model and beyond at hadrons colliders.

Need sophisticated algorithms and a deep understanding of the experiment!

Standard Model :

- Cross section measurement for 2 different initial state and \sqrt{s} .
- Test of the V A vertex at $Q \sim m_W$ first time at hadron colliders.

Higgs boson searches :

- Essential to test $g_{Hff} \propto m_f$, unique probe of Higgs-lepton couplings,
- Sensible to VBF, test consistency of the Higgs sector structure,
- **Evidence** at 4.1σ ! Possible perspectives for spin/CP.

Search for new phenomena :

- Push limits of supersymmetric extensions of the SM,
- Search for bigger/new gauge symmetry,
- And many other covered areas not described here

EW physics and beyond with τ leptons

Summary and outlooks

EW physics and beyond with τ leptons

Summary and outlooks

BACKUP SLIDES

Reconstruction at DØ (1/2)

Calorimeter cluster :

found by Simple Cone Algorithm in a $\Delta R \leq 0.5$ cone.

CAL clu

Electromagnetic subcluster :

found by Nearest Neighbour Algorithm with seed in the 3^{rd} EM layer (finer segmentation). $E_{EMsubclu} \ge 800 \text{ MeV}.$

EM sub clu

Tracks :

All tracks in a $\Delta R \le 0.3$ cone around the cal cluster compatible with τ decay (inv. mass cut).

Highest track $p_T \ge 1.5$ GeV.

Romain Madar (Freiburg Universität)

Reconstruction at DØ (2/2)

We will focus on **hadronic decay of** τ : τ_{had}

Reconstruction and DØ τ type definition for <u>hadronic</u> decay :

• DØ type 1 \equiv 1 trk , CAL clu $\sim \tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$

• DØ type 2 = 1 trk , CAL clu, EM sub clu ~ $\tau^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^0 \pi^{\pm}) \nu_{\tau}$

• DØ type
$$3 \equiv 2 \text{ trks}$$
, CAL clu

 $\sim \tau^{\pm} \rightarrow a_1^{\pm} (\rightarrow 3\pi^{\pm}) \nu_{\tau}$

Improvement of τ lepton identification

General point of view : Neural Network output $\eta^{NN}(\vec{X})$ **converges** to

$$\eta^{\rm true}(\vec{X}) \equiv \frac{\mathcal{S}(\vec{X})}{\mathcal{S}(\vec{X}) + \mathcal{B}(\vec{X})}$$

best discriminating function, related to Prob(S|X)

where $\vec{X} \equiv (x_1, x_2, ..., x_n)$ describes the discriminating variables space.

Improvement of au lepton identification

General point of view : Neural Network output $\eta^{NN}(\vec{X})$ **converges** to

$$\eta^{\text{true}}(\vec{X}) \equiv \frac{\mathcal{S}(\vec{X})}{\mathcal{S}(\vec{X}) + \mathcal{B}(\vec{X})}$$

best discriminating function, related to Prob(S|X)

where $\vec{X} \equiv (x_1, x_2, ..., x_n)$ describes the discriminating variables space.

In the au identification context :

A lot of ideas were tested to optimize the identification of τ leptons :

- Include preshower detector measurement X
- Exploit the long τ life time (like for b-jets) \checkmark
- Tune NN parameters (epoch, nodes, statistics) 🗸
- Dedicated training for τ of high $p_T \checkmark$
- Dedicated training for high luminosity events X

 $X \equiv$ no improvement; $\sqrt{=}$ improvement

improve $\eta^{\text{true}}(\vec{X})$

 $\begin{array}{c} \text{minimize} \\ |\eta^{\text{NN}} - \eta^{\text{true}} \end{array}$

Final improvement on au identification

Final result :

comparaison of $S/B(p_T^{\tau_{cand}})$ before and after optimisations.

15-30% improvement

Tool used by the collaboration in τ related papers (arXiv :1211.6993, PRD)

Résultats présentés à TAU2010

Final improvement on au identification

Final result :

comparaison of $S/B(p_T^{\tau_{cand}})$ before and after optimisations.

15-30% improvement

Tool used by the collaboration in τ related papers (arXiv:1211.6993, PRD) Résultats présentés à TAU2010

Experimental skills developped during this work on τ lepton identification

- Quite deep experience in multivariate classification,
- Reconstruction of EM energy deposit with scintillating strips detector, in an hadronic environnement (more in backup).
- Get familiar with couple of *b*-tagging algorithms.

au is a long lived particle

Use impact parameter to remove jets faking τ more efficiently. (large $c\tau_{\text{life}} \Rightarrow \text{large } d_0$)

 $\sim 10\%$ more signal for the same bkg

Le détecteur de pieds de gerbe (CPS)

Idée physique : exploiter les résonances spécifiques de la désintégration des τ (type 2) : $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$. Utiliser la segmentation de ce détecteur, plus fine que celle du calorimètre : $\Delta \phi_{CPS} \simeq 0.1 \times \Delta \phi_{calo}$

Radiateur (Pb) et 3 couches z, u, v d'environ 2600 bandes scintillantes chacunes :

- couche z (ou axiale) : les bandes sont dirigées suivant l'axe du faisceau,
- couche u : les bandes font un angle de +23 avec la couche z,
- couche v : les bandes font un angle de -23 avec la couche z.

Reconstruction officielle de DØ : un dépôt CPS est reconstruit pour 85% des candidats τ et pas d'accès à l'extension transverse du dépôt. Développement d'une reconstruction dédiée à l'identification des τ .

Détecteur de pieds de gerbe : reconstruction

• Pour chaque couche, on cherche un dépôt d'énergie au voisinage de la trace du candidat ($\approx \pi^{\pm}$).

Corrélations entre les couches : élimination des dépôts parasites

Les informations des 3 couches z, u, v sont combinées entre elles.

Résultat : un dépôt d'énergie $\equiv (\eta, \phi, E, \text{RMS})$ est reconstruit pour 95% des candidats

Romain Madar (Freiburg Universität)

Détecteur de pieds de gerbe : résultats

$$CPS_{
m cluster} pprox \gamma\gamma\left[\pi^{0}
ight]$$
 , ${
m trk} pprox \pi^{\pm}$

Observables:

- angle(dépôt CPS,trace)
- taille du dépôt CPS
- rapport de l'énergie calo et CPS

Après ajout de ces observables dans le NN, aucune amélioration significative n'a été observée.

Raison : ces informations sont fortement corrélées à celles du calorimètre.

Prise en compte de la cinématique

W+jets modelling (2/3)

Strategy : Understand the origin of the NN-dep. of OS/SS

- Some elementary processes exhibe correlation between Q_{parton} and $Q_W(=Q_\mu)$
- Charge correlation between the parton and the reconstructed τ depends on NN_τ

Convolution of these two effects give specific OS/SS dependence with NN_{τ} :

3 possibilities at the generated level :

- $Q_{\mu} \times Q_{\text{parton}} < 0 \text{ (gen OS)}$
- **2** $Q_{\text{parton}} = 0$ (gluons)
- $Q_{\mu} \times Q_{\text{parton}} > 0 \text{ (gen SS)}$

W+jets modelling (3/3)

Model : final prediction will be a "linear combination" of 3 above plots. Roughly : fit the relative contributions - related to q/g fraction in W+jets.

Romain Madar (Freiburg Universität)

W+jets modelling

• $W(\rightarrow \mu)$ +jets $(\rightarrow \tau)$ composition assumed to have 3 componants :

- $\tilde{\sigma}_+$: μ and parton of same sign ;
- $\tilde{\sigma}_{-}$: μ and parton of op. sign ;
- $\tilde{\sigma}_0$: neutral parton (gluon).needs each

where $\tilde{\sigma} \equiv \epsilon_{\text{type}} \sigma \mathcal{L}$ (the τ reco. efficency ϵ can be type dependant)

The charge correlation have NN dependance (see previous plots). Lets consider <u>3 fake rates</u> according to their charge correlation :

- $\mathcal{F}_+(NN)$: parton reconstructed as a same sign τ ;
- $\mathcal{F}_{-}(NN)$: parton reconstructed as an opposite sign τ ;
- $\mathcal{F}_0(NN)$: gluon reconstructed as a τ .

W+jets modelling (3/3)

Strategy : factorize the NN dependances of N_{OS} and N_{SS} . By rewritting previous equations, we have :

$$N_{\rm OS} = F \left(1 + \rho_0 R_0 + \rho_- R_+ \right) \tag{1}$$

$$N_{\rm SS} = F \left(\rho_{-} + \rho_0 R_0 + R_+ \right)$$
 (2)

where

- $F = \mathcal{F}_+ \tilde{\sigma}_-$ fake(NN-dependant) + norm. <u>common for OS & SS</u>;
- $\rho_0 = \frac{\mathcal{F}_0}{\mathcal{F}_+}$, $\rho_- = \frac{\mathcal{F}_-}{\mathcal{F}_+}$ explain the OS/SS(NN) (NN-dependent);
- $R_+ = \frac{\tilde{\sigma}_+}{\tilde{\sigma}_-}$, $R_0 = \frac{\tilde{\sigma}_0}{\tilde{\sigma}_-}$ fixed by physics and reco. (not NN-dependant).

Method to measure *W*+jets in DATA

- assumtion : trust $\rho_0(NN)$ and $\rho_-(NN)$ in the MC (ratio of fake)
- find $(F_{NN}, R_0, R_+)_{MC}$ in MC by fitting distributions;
- find $(F_{NN}, R_0, R_+)_{DATA}$ in DATA by fitting distributions;
- Correct the MC set of parameters by the data one

Identification of τ lepton in ATLAS

Pile-up robustness : Tau Jet Vertex Association (TJVA)

For each candidate : take the PV having the highest JVF

Trigger based on au_{had} signature

Very challenging : reduce the rate from ~ 1 GHz to few 100 Hz based on τ_{had} signature

Motivations :

- Allow to exploit $\tau_{had} \tau_{had}$ final state,
- For some $\tau_{\ell} \tau_{had}$ final state : allow to lower p_T^{ℓ} threshold (wrt ℓ triggers). In 2012, $p_T^{\ell} > 25$ GeV (at trigger level) but for $H(125) \rightarrow \tau_{\mu} \tau_{had}$ process, $\langle p^{\ell} \rangle \sim 20$ GeV : efficiency loss !

τ_{had} -based triggers :

- Level 1 : based on isolated calorimeter deposits
- Level 2 : consider isolated tracks matching the L1 objects
- Event Filter : exploit shower shapes with similar algorithms to offline ID

W+jets modeling (1/2)

W+jets modeling (1/2)

 scale W+jets in a control region (*ie*. signal free), selected in data (SS or OS low NN_τ)

W+jets modeling (1/2)

- scale W+jets in a control region (*ie*. signal free), selected in data (SS or OS low NN_τ)
- **But** extrapolation in the signal region needs :

$$\left. \frac{OS}{SS} \right|_{MC} (NN_\tau) \ \rightarrow \ well \ modeled \, ?$$

W+jets modeling (1/2)

A new approach is needed :

- **1** understand the NN $_{\tau}$ variation of OS/SS,
- 2 build a model based on 3 parameters,
- fit the model on data.

- scale W+jets in a control region (*ie*. signal free), selected in data (SS or OS low NN_τ)
- **But** extrapolation in the signal region needs :

Romain Madar (Freiburg Universität)

W+jets modeling (2/2)

Strategy : Understand the origin of the NN-dep. of OS/SS

- Some elementary processes have correlation between Q_{parton} and $Q_W(=Q_\mu)$ - related to q/g fraction
- Charge correlation between the parton and the reconstructed τ depends on NN_τ

W+jets modeling (2/2)

Strategy : Understand the origin of the NN-dep. of OS/SS

• Some elementary processes have correlation between Q_{parton} and $Q_W(=Q_\mu)$ - related to q/g fraction

Charge correlation between the parton and the reconstructed τ depends on NN_τ

Model : final prediction will be a convolution of these 2 effects, which can be parametrized and fit in data *W*+jets control regions.

Background modeling : $Z \rightarrow \tau \tau$ and W+jets

$Z \rightarrow \tau \tau$ modeling :

Data driven : τ "embedding" in $Z \rightarrow \mu\mu$ data events

- remove μ deposits and replace by a simulated τ .
- It's data (jets, pile-up, calo noise, soft radiations)
- limited by data statistics

Corrected (filtered) MC :

- goal : more stat in VBF category,
- correct jet topology based on $Z \rightarrow \ell \ell [data]$.

W+jets : corrected MC

- Norm corr factor (k_W) derived for m_T > 70 GeV
- Derived for OS and SS separatly : *k*_W^{OS} ~ 0.6 and *k*_W^{SS} ~ 0.8

Signal modeling : EW corrections of $qq' \rightarrow qq'H$

Motivations and goal :

- VBF@LO is EW : $\delta_{\text{EW}} \sim \delta_{\text{QCD}}$ (unlike $gg \rightarrow H$)
- σ_{tot} is already QCD+EW NLO : but shape effects of δ_{EW} ?

At generated level : most affected distribution is p_T^H - <u>HAWK</u>

At reconstructed level :

- negligeable impact, wrt to other exisiting systematics,
- This spectrum distortions should be kept in mind for the future.

$m_{\tau\tau}$ reconstruction : Missing Mass Calculator

= unknown value

- (1) **Perform a scan** over the unknowns, ie choose a config : $q = (d\Phi_1, d\Phi_2, M_{v1}, \text{mET}, p_v/p_t)$
- (2) For each configuration q_i : compute the full invariant mass m_i
- (3) Fill an histogram of m, weighted by w,=PDF(q,), as a product each above PDF
- (4) Final reconstruced mass, MMC, is given by the max of this histogram

MMC : results and features

7 TeV		8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	-	$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
≥ 2 jets	$\triangleright p_{\rm T}^{\rm \hat{H}} > 100 {\rm GeV}$	$\triangleright \ge 2$ jets	$\triangleright p_{\rm T}^{\rm H} > 100 {\rm GeV}$	
▶ $p_{\rm T}^{j_1}$, $p_{\rm T}^{j_2} > 40 {\rm GeV}$	$> 0 < x_1 < 1$	$P_T p_T^{j_1} > 40, p_T^{j_2} > 30 \text{ GeV}$	$> 0 < x_1 < 1$	
$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	
▶ m _{jj} > 500 GeV	▶ Fails VBF	$> m_{jj} > 500 \text{ GeV}$	▹ Fails VBF	
▷ centrality req.	-	▷ centrality req.	-	
$ \eta_{j1} \times \eta_{j2} < 0 $	-	$Piret \eta_{j1} \times \eta_{j2} < 0$	-	
$\triangleright p_{\rm T}^{\rm Total} < 40 {\rm GeV}$	-	$\triangleright p_{\rm T}^{\rm Total} < 30 {\rm GeV}$	-	
-	-	$\triangleright p_{\mathrm{T}}^{\ell} > 26 \mathrm{GeV}$	-	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
-	-	 b-tagged jet veto 	 b-tagged jet veto 	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ ≥ 1 jet, $p_{\rm T}$ >25 GeV	$\triangleright 0$ jets $p_T > 25$ GeV	▶ \geq 1 jet, p_T >30 GeV	$\triangleright 0$ jets $p_T > 30$ GeV	
$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	
Fails VBF, Boosted	▹ Fails Boosted	▹ Fails VBF, Boosted	▹ Fails Boosted	
• m _T <50 GeV	• <i>m</i> _T <30 GeV	• <i>m</i> _T <50 GeV	• m _T <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
-	• $p_{\rm T}^{\ell} - p_{\rm T}^{\tau} < 0$	-	• $p_{\rm T}^{\ell} - p_{\rm T}^{\tau} < 0$	

Re-optimization of 2011 analysis

The boosted topology : defined by $p_T^H \stackrel{\text{reco}}{=} p_T(\ell, \tau_{\text{had}}, \not\!\!\!E_T) > 100 \text{ GeV}$

Romain Madar (Freiburg Universität)

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	
		$Z \rightarrow \tau^+ \tau^-$		
Embedding	1-4% (S)	2-4% (S)	1-4% (S)	
Tau Energy Scale	-	4–15% (S)	3-8% (S)	Most important
Tau Identification	-	4-5%	1-2%	systematic :
Trigger Efficiency	2-4%	2–5%	2-4%	τ energy scale
Normalisation	5%	4% (non-VBF), 16% (VBF)	9-10%	· · · · · · · · · · · · · · · · · · ·
		Signal		dive et ineme et en
Jet Energy Scale	1-5% (S)	3-9% (S)	2-4% (S)	\rightarrow direct impact on
Tau Energy Scale	-	2–9% (S)	4-6% (S)	final observable (m_)
Tau Identification	-	4-5%	10%	
Theory	8-28%	18-23%	3-20%	
Trigger Efficiency	small	small	5%	

Romain Madar (Freiburg Universität)

EW physics and beyond with τ leptons

Summary and outlooks

Source of Uncertainty	Uncertainty on μ
Signal region statistics (data)	0.30
$Z \rightarrow \ell \ell$ normalization ($\tau_{lep} \tau_{had}$ boosted)	0.13
$ggF d\sigma/dp_T^H$	0.12
JES η calibration	0.12
Top normalization ($\tau_{kep}\tau_{had}$ VBF)	0.12
Top normalization ($\tau_{lep}\tau_{hud}$ boosted)	0.12
$Z \rightarrow \ell \ell$ normalization ($\tau_{lep} \tau_{had}$ VBF)	0.12
QCD scale	0.07
di-thad trigger efficiency	0.07
Fake backgrounds $(\tau_{lep}\tau_{lep})$	0.07
τ_{had} identification efficiency	0.06
$Z \rightarrow \tau^+ \tau^-$ normalization $(\tau_{lep} \tau_{had})$	0.06
τ_{had} energy scale	0.06

Romain Madar (Freiburg Universität)

EW physics and beyond with τ leptons Summary and outlooks

Uncertainty	Affected processes	Change in acceptance
Tau energy scale	signal & sim. backgrounds	1–29%
Tau ID (& trigger)	signal & sim. backgrounds	6–19%
e misidentified as τ_h	$Z \rightarrow ee$	20-74%
μ misidentified as τ_h	$Z \rightarrow \mu \mu$	30%
Jet misidentified as τ_h	Z + jets	20-80%
Electron ID & trigger	signal & sim. backgrounds	2–6%
Muon ID & trigger	signal & sim. backgrounds	2–4%
Electron energy scale	signal & sim. backgrounds	up to 13%
Jet energy scale	signal & sim. backgrounds	up to 20%
E ^{miss} scale	signal & sim. backgrounds	1–12%
ε_{b-tag} b jets	signal & sim. backgrounds	up to 8%
ε_{b-tag} light-flavoured jets	signal & sim. backgrounds	1–3%
Norm. Z production	Z	3%
$Z \rightarrow \tau \tau$ category	$Z \rightarrow \tau \tau$	2–14%
Norm. W + jets	W + jets	10-100%
Norm. tī	tť	8-35%
Norm. diboson	diboson	6-45%
Norm. QCD multijet	QCD multijet	6-70%
Shape QCD multijet	QCD multijet	shape only
Norm. reducible background	Reducible bkg.	15-30%
Shape reducible background	Reducible bkg.	shape only
Luminosity 7 TeV (8 TeV)	signal & sim. backgrounds	2.2% (2.6%)
PDF (qq)	signal & sim. backgrounds	4-5%
PDF (gg)	signal & sim. backgrounds	10%
Norm. ZZ/WZ	ZZ/WZ	4-8%
Norm. $t\bar{t} + Z$	$t\overline{t} + Z$	50%
Scale variation	signal	3-41%
Romain Madar (Freiburg Universität)		LPC seminar - 24/01/14

 $60 \ / \ 64$

Search for H^{++} (DØ)

PRL 108, 021801 (2012)

Motivations : doubly charged Higgs are predicted by :

- models with larger gauge symmetry, like $SU(3)_c \otimes SU(3)_L \otimes U(1)_Y$.
- Seesaw mechanism giving mass to neutrinos (with Higgs triplets).

Data sample : 7.3 fb⁻¹ of analyzed data with at least 1 muon and at least 2 τ **Analysis overview :**

- Production of doubly charged Higgs : $q\bar{q} \rightarrow Z/\gamma^* \rightarrow H^{++}H^{--}$
- Decay : $H^{++} \rightarrow \tau \tau$, $\mu \tau$, $\mu \mu$ (\mathcal{BR} dependent on m_{ν} hierarchy)
- Splitting events according N_{τ} and N_{μ} , and electric charge of τ s

Lepton Flavor Violation (LFV)

Motivations :

- LFV is **actually observed** in neutrino oscillations.
- SM extension should contain LFV at some level!
- Constraints from low energy physics ($\tau \rightarrow \mu \mu \mu, \tau \rightarrow \mu \gamma, ...$)

Study of 2 sectors at LHC : Higgs and *Z* decay, $X \rightarrow \mu \tau / e \tau / e \mu$

Lepton Flavor Violation (LFV)

Motivations :

- LFV is actually observed in neutrino oscillations.
- SM extension should contain LFV at some level!
- Constraints from low energy physics ($\tau \rightarrow \mu \mu \mu, \tau \rightarrow \mu \gamma, ...$)

Study of 2 sectors at LHC : Higgs and Z decay, $X \rightarrow \mu \tau / e \tau / e \mu$

LFV phenomenology : (for *Z* decay only)

$$\begin{array}{c} g_{Z}m_{Z}^{2}[\overline{\mu}\gamma_{\alpha}(A_{L\mu\tau}P_{L}+A_{R\mu\tau}P_{R})Z^{\alpha}\tau+h.c.] & \textbf{A and D terms} \\ +2g_{Z}[\overline{\mu}\gamma_{\alpha}(C_{L\mu\tau}P_{L}+C_{R\mu\tau}P_{R})\partial^{\beta}\tau+h.c.]Z^{\beta\alpha} & \textbf{constrained by low energy} \\ +ig_{Z}m_{\tau}[\overline{\mu}\sigma_{\alpha\beta}(D_{L\mu\tau}^{Z}P_{L}+D_{R\mu\tau}^{Z}P_{R})\tau-h.c.]Z^{\alpha\beta\alpha} & \textbf{constrained by low energy} \\ \hline \mathcal{BR}(Z \rightarrow \mu\tau) \sim 1.7 \times 10^{-5} \left(\frac{m_{Z}}{\Lambda_{NP}}\right)^{4} \\ \textbf{Existing constraints (a) OPAL (b) DELPHI} & \textbf{Existing constraints (a) OPAL (b) DELPHI} \\ \hline \frac{process}{BR(Z \rightarrow e^{\pm}\tau^{\mp}) (a)} \frac{1.7 \times 10^{-6}}{9.8 \times 10^{-6}} \\ BR(Z \rightarrow \mu^{\pm}\tau^{\mp}) (b) \frac{1.2 \times 10^{-5}}{1.2 \times 10^{-5}} \end{array} \\ \begin{array}{c} \textbf{A and D terms} \\ \textbf{constraints} \\ \textbf{constraints} \\ \textbf{constraints} \\ \textbf{constraints} \\ \textbf{BR} < 10^{-5} \end{array}$$

Analysis strategy for LFV in Z decay :

- Focus on $e\mu$ final state : $Z \to e\mu$, $Z \to \tau(\to e2\nu)\mu$ and $Z \to e\tau(\to \mu 2\nu)$.
- Main background : $Z \rightarrow \tau \tau \rightarrow e \mu 4 \nu$, reducible with kinematic.

Analysis strategy for LFV in Z decay :

- Focus on $e\mu$ final state : $Z \to e\mu$, $Z \to \tau(\to e2\nu)\mu$ and $Z \to e\tau(\to \mu 2\nu)$.
- Main background : $Z \rightarrow \tau \tau \rightarrow e \mu 4 \nu$, reducible with kinematic.

Lepton Flavor Violation in H decay

