# Identification of $\tau$ lepton at the DØ experiment

#### Romain MADAR<sup>a</sup>

<sup>a</sup>Service de Physique des Particules CEA Saclay, Irfu/SPP - France

AMERICAN PHYSICAL SOCIETY –  $15^{\text{th}}$  of February 2010 –

| 1 | $\sim$ | $\sim$ |   |
|---|--------|--------|---|
| 6 | ᆺ      | ス      | J |





# **Overview**

#### 1 Motivations

- 2  $\tau$  lepton properties & reconstruction
- 3 Understanding of  $\tau_{had}$  object •  $\tau_{had}$ /jet discrimination
  - $\tau$  energy calibration
- Identification improvements
   New discriminating observables
  - Multivariate analysis optimization



# **Motivations**

#### SUSY SM extention

 $\left. \begin{array}{l} \bullet ~~ \tilde{q},~\tilde{g}, \\ \bullet ~~ \mathrm{weak~gauginos},~\ldots \end{array} \right\} \mathrm{cascade~decays~can~end~with}~\tau \mathrm{'s}$ 

**Higgs sector of MSSM** After  $SU(2)_{I} \times U(1)_{Y}$  symmetry breaking :

- **①** 3 neutral Higgs fields  $\phi \equiv (H^0, h, A)$ ,
- **2** charged Higgs fields  $H^+, H^-$ .

For the neutral Higgs search :



 $_{\tau} \bullet \ \varphi \ {\rm decays} \ {\rm in} \ \tau\tau \ (10\%) \ {\rm and} \ bb \ (90\%)$ 

 $\phi$  ,  $\bullet$  but  $b\bar{b}$  final state : multijet bkg

Sensitive process :  $p\bar{p} \rightarrow \phi \rightarrow \tau \tau$ 

#### $\tau$ lepton properties & reconstruction

#### The $\tau$ lepton and its reconstruction

**Physical properties :**  $m_{\tau} = 1.78 \text{ GeV}, c\tau_{\text{life}} = 87 \ \mu\text{m}$ 



We will focus on hadronic decay of  $\tau : \tau_{had}$ 

Reconstruction and DØ  $\tau$  type definition for <u>hadronic</u> decay :

- $\bullet \ {\rm D} \ensuremath{\emptyset} \ {\rm type} \ 1 \equiv 1 \ {\rm trk}, \ \mbox{HAD} \ {\rm deposit} \ \ \sim \tau^\pm \to \pi^\pm \nu_\tau$
- DØ type  $2 \equiv 1$  trk, EM and HAD deposit ~  $\tau^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^0 \pi^{\pm}) \nu_{\tau}$
- DØ type 3  $\equiv$  at least 2 trks, HAD deposit ~  $\tau^{\pm} \rightarrow a_1^{\pm} (\rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm}) \nu_{\tau}$

Romain Madar (CEA/Irfu/SPP)

 $\tau \ \mbox{lepton identification at D} \ensuremath{\varnothing} \ensuremath{\mathbb{V}} \ensuremath{\mathsf{U}}\xspace{\ensuremath{\mathsf{lepton identification}} \ensuremath{\mathsf{lepton identification}} \ensuremath{\mathsf{theorem}} \xspace{\ensuremath{\mathsf{lepton identification}} \ensuremath{\mathsf{theorem}}\xspace{\ensuremath{\mathsf{lepton identification}} \ensuremath{\mathsf{theorem}}\xspace{\ensuremath{\mathsf{lepton identification}} \ensuremath{\mathsf{theorem}}\xspace{\ensuremath{\mathsf{lepton identification}} \ensuremath{\mathsf{dentification}}\xspace{\ensuremath{\mathsf{lepton identification}} \ensuremath{\mathsf{theorem}}\xspace{\ensuremath{\mathsf{lepton identification}} \ensuremath{\ensuremath{\mathsf{dentification}}\xspace{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{lepton identification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\ensuremath{\mathsf{dentification}}\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensurem$ 

 $\tau_{had}$ /jet discrimination

#### Identification of true $\tau$



Jets could have the same experimental signatures as hadronic  $\tau$  and need to be removed.



 $\tau$  lepton identification at DØ Understanding of  $\tau_{had}$  object

 $\tau_{had}$ /jet discrimination

#### Identification of true $\tau$



#### $\tau_{\text{fake}}$ 12 discrimating observables $\tau_{fake}$ $\tau_{true}$ $E_r^{lead} + E_r^{2^{rnd}lead}$ 12 • track isolation, p<sub>T</sub><sup>trk≠τ<sub>can</sub></sup> Neural Network • calo isolation, $\overline{\mathbf{p}_{\tau}^{trk \neq \tau_{cand}} + \mathbf{p}_{\tau}^{trk - \tau_{cand}}}$ • shower shape, NNout • trk-cal correlations. 4 65 84 0 RMScolo $\frac{c_1}{E_T + \sum_{k' \in I} p_T^{lpk}}$

#### Romain Madar (CEA/Irfu/SPP)

Understanding of  $\tau_{had}$  object

 $\tau$  energy calibration

# $E_{\tau}$ calibration : "E/p correction"

#### Known effect

The calorimeter response is slightly different in the simulation and in data.  $\tau_{\text{measured}} \equiv \{\gamma, \pi^{\pm}\}$  energy needs a relative correction.

#### Correction method

Use the track energy as reference to correct simulation event by event :

$$\begin{pmatrix} \frac{E}{p} \end{pmatrix}_{MCcorr} = \begin{pmatrix} \frac{E}{p} \end{pmatrix}_{MC} \times \frac{\langle E/p \rangle_{data[Z \to \tau\tau]}}{\langle E/p \rangle_{MC}}$$
with
$$\bullet E/p \equiv E^{calo}/p^{trk} \\ \bullet \langle E/p \rangle \equiv \text{average value.}$$

$$\begin{cases} \frac{240}{200} \\ \frac{100}{100} \\$$

Romain Madar (CEA/Irfu/SPP)

# **Overview**

#### 1 Motivations

- 2  $\tau$  lepton properties & reconstruction
- 3 Understanding of τ<sub>had</sub> object
   τ<sub>had</sub>/jet discrimination
   τ energy calibration
- Identification improvements

   New discriminating observables
   Multivariate analysis optimization

#### 5 Conclusions and outlooks

Identification improvements

New discriminating observables

### Central PreShower (CPS) for type 2

**Physical idea.** Exploit specific resonance of  $\tau$  **type** 2 decay :  $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$ . Use Central PreShower detector with fine segmentation :  $\Delta \phi_{\rm CPS} \simeq 0.1 \times \Delta \phi_{\rm calo}$ 

 $CPS_{\rm cluster}\approx\pi^0$  ,  ${\rm trk}\approx\pi^\pm$ 



 $\tau$  lepton identification at  $D \varnothing$ 

Identification improvements

New discriminating observables

### Central PreShower (CPS) for type 2

**Physical idea.** Exploit specific resonance of  $\tau$  **type** 2 decay :  $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$ . Use Central PreShower detector with fine segmentation :  $\Delta \phi_{\rm CPS} \simeq 0.1 \times \Delta \phi_{\rm calo}$ 



Scintillating -

strips

Calorimeter

Central PreShower

Identification improvements

New discriminating observables

# $\tau$ is a long lived particle



Use impact parameter to remove jets faking  $\tau$  more efficiently. (large  $c\tau_{life} \Rightarrow large d_0$ )

Identification improvements

New discriminating observables

# $\tau$ is a long lived particle





Use impact parameter to remove jets faking  $\tau$  more efficiently. (large  $c\tau_{life} \Rightarrow large d_0$ )

Identification improvements

New discriminating observables

# $\tau$ is a long lived particle



Use impact parameter to remove jets faking  $\tau$  more efficiently. (large  $c\tau_{life} \Rightarrow large d_0$ )



Clear improvement in performance!

τ lepton identification at DØ Identification improvements Multivariate analysis optimization

# Multivariate analysis optimization

- $\bullet$  Change training sample from current DØ  $NN_{\tau}$  : add  $\tau_{cand}$  of low  $p_{T},$
- larger training sample,
- More epochs,
- More nodes.

 $\tau_{\rm true}/\tau_{\rm fake}$  differences described in more details



# **Overview**

#### 1 Motivations

- 2  $\tau$  lepton properties & reconstruction
- 3 Understanding of τ<sub>had</sub> object
   τ<sub>had</sub>/jet discrimination
   τ energy calibration
- 4 Identification improvements

   New discriminating observables
   Multivariate analysis optimization

#### **5** Conclusions and outlooks

# Conclusions & outlooks

#### General :

- τ lepton is a key object to probe new physics as well as SM physics, (see Kathy and Melvin's talks).
- Understand these objects is an experimental challenge.

#### Last results for the DØ experiment :

- Use Central PreShower : no significant improvement,
- $\bullet\,$  Use the decay length information :  $\sim 10\%$  improvement.
- $\bullet\,$  Optimize Multivariate analysis :  $\sim 10\%$  improvement.

#### Future plans :

• Large contamination of electrons : finer segmentation of PreShower could provide strong discriminant.

Conclusions and outlooks

# **BACKUP SLIDES**

Romain Madar (CEA/Irfu/SPP)

APS Meeting - 02/15/2010 13 / 16

# DØ detector

# Multi purpose detector: µ id, EM id, jets, taus, Æ⊺, b-jets tagging



# MSSM charged Higgs

#### Charged higgs bosons via $t\bar{t}$ events

M<sub>...</sub>=80 GeV <sup>4</sup>00tr S DØ, L=1.0 fb1 a t  $B(H^+ \rightarrow \tau \nu)=1$ Data 00000 tt Br(t  $\rightarrow$  H<sup>+</sup>b)=0.0 10<sup>3</sup> ā tt Br(t  $\rightarrow$  H<sup>+</sup>b)=0.3 w tt  $Br(t \rightarrow H^+b)=0.6$ background 10<sup>2</sup> t 000000 w 10 I+jets 1 tag I+jets 2 tag dilepton τ+lepton

### Identification efficiency correction

**Problem :** ID efficiency ( $\varepsilon_{ID} \equiv \frac{N[\tau_{NN>cut}]}{N[\tau_{true}]}$ ) is better in MC than in data.

Solution : Measure ID eff in data and correct the simulation :

- **1** Build a pure  $\tau$  data sample  $S \equiv \text{Data} \sum_i \text{Bkg}_i \approx Z \tau \tau_{\text{data}}$ ,
- 2 All  $\tau^{\text{cand}}$  from S is assumed to be a true  $\tau : \epsilon_{\text{ID}}^{\text{data}} = \frac{N[\tau_{\text{NN} > \text{cut}}]}{N_{\text{tot}}}$ ,
- $\label{eq:correct} \textbf{3} \ \ {\rm Correct \ the \ simulation \ to \ have \ } N_{\rm MCcorr}[\tau_{\rm NN>cut}] = N_{\rm data}[\tau_{\rm NN>cut}]:$

$$N_{\rm MCcorr}[\tau_{\rm NN>cut}] = \frac{\varepsilon_{\rm ID}^{\rm data}}{\varepsilon_{\rm ID}^{\rm MC}} \times N_{\rm MC}[\tau_{\rm NN>cut}]$$

